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1. Aestract 

The Telerobot Testbed is a hierarchically distributed processing system which is linked 
ogether through a standard. comnercial Ethernet. Standard Ethernet systems are primarily 
esigned to manage non-real-time information transfer. Therefore, collisions on the net 1 i.e., two or more sources attempting to send data at the same time) are managed by randomly 
kescheduling one of the sources to retransait at a later t i n  interval. Although acceptable 
kor transmittinq noncritical data such as aail, this particular feature is unacceptable for 
ireal-time hierarchical cornand an3 control systems such as the Telerobot. Data transfer and 
Izchedulinq simulations, such as token ring, offer solutions to collision management, but do 
;not appropriately characterize real-time data transfer/interactions for robotic systems. 
Therefore. models like these do not provide a viable simulation environaent f o r  understanding 
real-time network loading. A real-time network loading model is being developed which alloys 
processor-to-processor interactions to be simulated. collisions (and respective probabilities) 
t o  be logqed. collision-prone areas to be identified. and network control variable adjustments 
to be reentered as a means of examining and reducing collision-prone regimes that occur in the 
process of simulating a complete task sequence. The phase-one development results are 
presented ,i- . Results include 1) the theoretical foundation for the network flow 
model. 2) an overview of the simulation design and constraints, and 3 )  the software design. 
Ultimately, the simui~tion will be used to cxaaine potential loadinq problems as out-year deeo 
perfoimance improvements cause increased data traffic. The simulation will also provide a 
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1 systematic means O C  managing resulting loading probleas. 

%educt ion 
Distributed processing systems are becolning eItrecllely comnon for passing mail between 

processors that are collocated in the same facility or separated by large geographic 
distances. Therefore, viable comnercial systeas have been developed that place processors on 
comnunication networks. For purposes of passing mail between processors, studies on Ethernet 
local network efficiencies have shown mean response frequencies on the order of 39.5 BS, with 
100% of a l l  traffic arriving by 2 0 0  ms (Ref. 1). Average utilization (on the order of 121 
bytes per packet) with 10 hosts (processors) on the net indicates mean arrival times on the 
order of 10 ins (Ref. lj. Under normal operating conditions, the above response times are 
excellent. I f  variable hosts require an intermediate protocol packaqe to ensure m a s 8 g c  
consistency, then an additional mean overhead of 7 to 10 m s  IS not unusual. Again, if mail 
passinq is the primary occupation of the network. then 20-50 ma is perfectly acceptable. 

The Telerobut Testbed i ?  .~resently employing an Ethernet (with DECnet protocol) system 
t o  facilitate interprocessor comwnication within the overall system computer hierarchy. 
Where normal mail passinq finds response times on the order of 20-50 ins perfectly acceptable. 
robotic systems find delays in excess of 10 ns undesirable. T!be key reason why it is 
important to minimize signal delays is ,otential control instabilities at the lowest level of 
the control hierarchy (i.e., the manipulator end-effector servo control level). In 
hierarchical command and control systems. coaaands must be passed f r o a  the system exec  level 
t t i ~ ~ u y h  several intetmediate control levels before they r e a c h  the s e ~ v o  control level. In 
the Telerobot. the cperator acts as the system exec by confirmrng the automated task sequence 
with the Ai planner (the next level). The planner forwards hiqh-level task co-nds to the 
run-time controller (the third level in the hierarchy) where each task IS broken down into a 
sr11nq of primitives containing important end-point state variables, trajectory via points. 
and force/torque information. The run-tine controller then forwaids requests and coaands to 
the manipulator control and sensinqlperception processors for control execution (the fourth 
level df the hieiarchy). Additionally, because of mismatches between piocessor protocols. a 
network interface package is necessary to maintain protocol consistency over the net. Even 
Chouqh there IS a discrete hierarchy for cornand passinq. each processor will ba 
srmultaneously manaqinq outqoinq conmands and incoming requests (i.e., requests for 
wozld-state updates from higher level processors). In a static environment in which all 
tixtures are stationary. the effect of collisions on the net ( t w o  o i  more hosts trvinq to 
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rend data at the s u t  time) will be to r r o l y  6.gr.d. the rate at which the manipulators ud 
end-effectors respond to incorinq corwads. Hawaver, in c dynamic environment in uhicb 
objects or obstacles are roving (such as a rotati- satellit.), tho deqradation in s p r b  

end-effectors. 

Techniques have been devoloped which onsure that network collisions aro minimized. O m  
of tho aost popular rathods is town rimq. "he t okea ring tochniqua basically assumes tmt 
Dcssage packots arrive .ccordiag t o  a r a m  procl.ss (Ref. 2). A si1q10 control t o m  
zirculates around tha ring from one bost processor to the next. Wben a bost observes that 
the token has been received, 8 data packet is Qucwt for transmission. Tlte token baEica11y 
completes an array of 'and' qat. inputs and allows tho packet to be transaitted. Upon 
completion. the token is passed to tho m xt host, and so on, until it returns to enable 
another packet to be sent. Although this approach minimizes collisions on the mt, it doo8 
not anahla asynchronous wtwork traffic (such 18 voold be experienced by t k  telorobot) to  
propagate back and forth. ?or exwph. if an . r r w  stop signal uas r.quir.6 i n  c0spO.u 
to a calculated error, t k n  control p r o b l m  could arise i f  t& processor tlut noodod to mad 
the signal had to wait a full -10 to r m i v o  tho token. 

Therefore. in developing a simulation for tho Telorobot corund and control hierarchy. 
attention had to be paid to developing a rore stochastic network event process. 6tOCh.8tiC 
petri-nets (Ref. 3) and stochastic activity networks ( R e f .  4 )  provided the most fruitful 
basis for modeling and simulating messaqc traffic on the telerobot distributed procossimq 
network. Tbese models were useful because they basically model 1) the arrival of packts, 2) 
the queuing of packets, 3) tho propagation of data, and 4) the detection of collisions. The 
Telerobot distributed processing hierarchy can be characterized as shown in ?igure 1. 

Could C ~ Y M  SignifiCWlt mntro1 probl.rtr and potmCi81 dm8ge t o  tha u n i p 1 8 t O r 8  .ad 
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Figure 1. Telerobot Distributed Processitq Hierarchy (Automated Control) 

Figure 1 shows the operator control station (OCS) interfacing with the testbed uec 
(TBE) and the AI planner (AIP). During telaoporation the intermediate IevOls Of tho 
hierarchy a r e  bypassed and tbo OCSITZLCOP interfaces directly uith the manipulator COntrO1 
mechanization (Iy11) and sens~ng/perception (SLP) subsystems. The fBE also intorfacos uith 
all other subsystems. Houever. tor the FY 1907 and 1988 dams any robust control capability 
for the TBE uill be suppressed: only system initialization and configuration Vi11 U h t ,  
which primarily requiros a one-on-on. interface with each subsystem in tho hierarchy duriap 
start-up. At the AIP level of tbh hierarchy the planner interfaces uith the OCS, and 
the run-time controller (RTC). Aqain. k c r u s e  of the hierarchical design. tho Tet a d  OCs 
interfaces occur respactivoly during tho system start-up and initialization phase, followed 
by the t a s k  sequence (menu) confirmation phaso. Tba RTC interface occurs alternatoly as oach 
task element in the raguenco is presented to the operator for reviaw/confirution aftor tho 
Ilfi has retrieved and forwardad tbo various uorld-state parameters to r i l l  the menu. The Il'C 
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procossor involv-nt, data i r i n u i s s i o n  froqwaCios, and data rates as -8xpact.d for tbo 
Telorobot Tostbod. 

Processor s n u q .  of Order of #lag. 
Data Rate (Bits/Sec) oporational node 1nTO:v.d Data Tram. 

Stact-up/Shut- ocs - Tee 
down TBE - AIP < 10-3 HZ 

TBC - RTC 
TBE - llQvSbP 

< lo2 bps 

~~ -~ ~ 

StatusIInitial- TBC - ocs 
itation TBE - AIP 

TBC - RTC 10-1-10-2 HZ lo3 bps 
TBC - llQvSbP 
AIP - Prc 
RTC - W S b P  

intorface is also initiated aftor tbo wnu bas bema appropriatoly q l o t e d  and the AIP bas 
forwarded t k  first set OC uocution corunb.. Tlu RTC tben receivos tboso counds and 

Planning OCS - AIP 
AIP - RTC 
m-na 
#fc - SbP 

- 5  - 1 HZ l o3  bps 

Eaecut ion 

- Autonornus 

- Teleop 

AIP - RTC 
U X  - erWSbP 
TBE - AIP/RTC/ 

)IM/sLP 

- < 5 Hz IO3 bQS 

Considering the above expected loading. the notuork activity is very low for tho 
start-up. status/initialitatioa. and plaaainq operational rod... This is because at any 
given time only two processors are actually t8lki1tq to each othor. This is o w  of tho 
advantages of the hierarchical design. Furthermore, the communication is at a fairly low 
rate and on the order of 'question-answer' typo intoractions. Since the ba-idth of tbo 
Ethernet is on the ordor of 10 Mps, tbo notwork will only be utilized at a max of .001--01% 
capacity,. the planning rod. similarly falls into tho lw utilization category. As 
illustrated by Figure 1 and confird by tho above tablo. the area of concern revol~or around 
the autonomous control execution mode. Both the trandssion frequency and data ratos 
increase substantially. Even though the utilization only increases to .1-1% capacity, tbe 
concern with this particular portion of the system in term Of W l i n q  arises from projected 
substantial increaser in tho out-year utilization. ?or rodalin9 this critical area in tho 
distributed processor configuration it appoars that at .ow t i n  in the task execution -0. 
threo to five processors right be compotinq for  access to the n e t .  Also, the longor. tha not 
is occupiod by one procossor, the greater tho odds bacou that more than one procossor will 
bo corpating for accoss to tho not. Tho major ovorhoad variables that surfaco from tho abovo 
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design and discussion (and confirmed by the literature (Refs. 3 and 4)) are as follows: 

1. 

2 .  
3. 
4 .  
5 .  
6 .  

7 .  
8 .  

Tbe D u r k r  of processors (hosts) attempting to corrunicate with each other at one 
ti-. 
Tbe frequency at which the processars colluaicate. 
Tha sire of the data blocks b d n p  c-nicated. 
Tbe internal subsystem processing time per standard data block. 
The intornal NIP protocol delay. 
Tbe queue tiae for backlogqed data packets before they get transmitted (from thr BI? 
to tb. host:. 

Th. Ethernet transmission interval per data block. 
retransrission delay resulting from a collision. 

For this phase-one development activity, the sirulation will only d e l  network 
interactions involving the AIP, RTC, c)(11, and SLP. Tbe frequency at which the processor8 
coaunicate or transmit data pac-kts will br, 8ynchronized for task execution c o u n d s  (i.8.. 
a data packet sent by processor n to processor n+l m s t  be acknowledged on receipt before 
processor n+l  can send a packet to processor n+2) and randoaly selected for data update 
requests. The size of the data blocks'being transmitted will be randomly selected within tbs 
respective bps ranges given in Table 1. The NIP internal overhead will be a constant (i.0.. 
a mean value of 7 as). The queue time delay will be 0 if the queue is empty. and increased 
accordingly as the queue increases based on actual experience with the NIP. The 
retransmission interval will be based on the Ethernet hardware specs and each retransnissioo 
tine will be selected randomly within that interval. The internal processing time will k 
established by multiplying the specified average hardvare internal overhead per data block 
times the randomly selected data block size. Similarly, the Ethernet overhead is determined 
by multiplying the inverse of the 10 Hbps times the randoaly salected data block size. Since 
all processors are collocated in one facility. distance will not be a factor in the Ethernet 
over head. 

3. Model Description 

The basic problem is to establish the time interval required to move an event (e) 
successfully from processor (n) to processor (n+l), which in turn nust move the event to pro- 
cessors (n+2) and (n+3). If, at any time, the state processing and sojourn times for an event 
qenerated by a given processor are equal to (or overlap) the state processing and sojoura 
times for an event geqerated by an interacting processor, then a collision occurs and the 
respective events receive an additional retransmission time delay, are placed in a queue, rad 
a new state is calculated/tested to determine if a collision occurs. The event must pass 
successfully through the €oar processors before it is discarded and a new event randomly 
selected. Before the event is discarded, the vital statistics of 1) total sojourn time, aad 
2) number of collisions are collected and stored for calculating the overall system delay aad 
collision probabilities. The events and interactions are structured as an input/output €1- 
problem with each processor being linked by tagged events (e.9.. an event that successfully 
leaves the AIP (processor n-1) as an output becomes an input to the #IT (processor n+l-Z), and 
20 on through the hierarchy). Nathematically, the overhead state time interval (S) f o r  pro- 
cessor n and event 1 (e-1) can be stated as the sun of all internal processor state overheads 
(so): 

where, the state overheads are the delays indicated in Section 2 above. 

BY not suppressing the upper bound on the event sumaation, the total overhead time for 
p~i)cessor (n) can be calculated using: 

U D  I 

where (u) represents the total events GC comoands and requests associated with a given task 
sequence. It then follows that the total delay (S tot) associated with events parsiag 
thtouqh the hierarchy (in this case oniy the AIP (n-I;, R T C  (8%-2). )IQI (n-3). and SLP (a-4) 
can be given 3s: 

4 

Stot - c Seo 
n- 1 
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a 

e 

Conditionally, if 8x3 event arrival 8t a processor conflicts with another event inpat/output 
arrival 8t the mm processor, then 8 collision (and 8ddition.l delay) is imposed. The 
following collision conditions hold for 8 gi~en event arri~al: 

ai ther, 

I P I 
sao n-1 'eo n-a+l 

P 

0-1 0- 1 

or, given the Ethernet overhead (E) 

The above later condition simply means that the net is occupied and processor -1 cannot 
accept the comand from processor n. The cowand from processor n wuld then be placed in 
processor n+l's queue and assigned a delay interval comnensurate with its place in tbe queue. 

Calculation of the collision probability for each processor, and the hierarchy as a 
whole, is done by merely employing standard statistical expressions using the logged 
collisions and total events processed. 

The last major constraint employed for the model was a definition of -real-time: This 
was necessary since collisions are really only important if they indeed cause a subsequent 
degradation in system performance (i.e., speed). Therefore, after each event ripples through 
the hierarchy and the collision/tima delay data are logged, the system delay is camp-red 
against the actual lag time of the systea to determine if the lag ti- was exceeded. It is 
presently planned to use the manipulator control lag as the real-time baseline. For example, 
this means that if control lag for manipulator movement (under the planned operating speed) 
is 20 ms, then a collision aggregate delay of 15 m s  would not affect operating speed at all. 
However. as response and operating speeds increase with improvements in manipulattr control 
design, acceptable aggregate delays might be driven down into the 2-3 m s  range. 

The above model is still being examined froa the standpoint of coqleteness and 
available data. As the software development proceeds and data bases are asserbled, 
additional changes may be incorporated to further define the processor interaction 
environment. The next section briefly sunrnarizes the software program being developed to . 
implement the aodel. 

4 .  kscription of Simulation Program 

In this section w e  will illustrate the construction of an event scheduling siulator for 
the network model discussed in the previous sections. In this simulator each event, created 
and scheduled with a time tag, represents the main activity of the network model. This time 
tdg decider the ordering of events in the event pool of the system. This ordering also 
determines the execution of the events and therefore describes the operation of the network 
model. During the operation, there is always one available event. 

A s  shown in Figure 2, the simulation program consists of six major amponcnts: 
initialization. event access, housekeeping, network activity, event handling, and report 
generation. The initialization module prompts the required system parameters such as number 
of desired R f c  coimands, initializes global variables, and sets the initial conditions cf the 
system. The event access module uses a time tag and event number for each event to select a 
most recent event for execution. The execution of an event means activation of the event, 
transmission of the conunication packet. and processing of the connand actions if any. The 
housekeeping mdule advances the system clock based on the time tag of the current event, 
generates data requests periodically, and collects the required statistics data from the 
network activity module. The network activity module evaluates the interactions (state 
overhead) of the available events in :he Ethernet network. The event handling module 
performs the processing of the command actions to generate Zurther acti-rity in tbc system. 
It contains screral handlers to deal with different types of events. The report generation 
module assembles the required system delay and collision probabilities once the simulation 
terminates. Tbe system will terminate when the event access module cannot get an available 
event, which means the event pool is erpty. 

Among these si. modules, only the network activity module and event-handling module 
directly relate themselves to behavior of the network model. Therefore, they wilt be 
discussed in =re detail. 

177 



SlART + 
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HOUSEKEEPING 

EVENT HANDLING 

REPORT GENERATION m 
(+) 

Figure 2. The Main Flow Diagram of the Simulation Program 

The flowchart for the network activity module is shown in Figure 3. The main function 
of this module is to detect and record the collision of events. Collision occurs when two or 
more events are trying to occupy the network at the same time. Therefore, in order to detect 
the collision, the simulator computes the period of the current event residing on the network 
and with a given processor, and then searches through the event pool to check if any other 
events in the event pool will be arriving during this same period. If a collision occurs, 
a l l  the involved events will be removed from the event pool and be appended to the network 
queues associated with the processor. Note that a random time delay will be added to each 
collided event for retransmission. If no collision occurs, the event becomes active and ts 
ready to be processed (passed to the next processor) by the event handling module. The passed 
event is an output of the latter processor and an input to the next processor. 

The flow diagram of the event-handling module is shown in Figure 4. There are four 
types of events in this simulator: cornrand, acknowledge. request. and response. They will 
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be handled differently. Once a colund event is received, the subsystem will generate an 
acknowledge event back to the originating subsystem. Then the requested co-nd is passed to 
the next processor. Concurrently, the AIP and the RTC processors uae request events to 
acquire data from lower level of the hierarchy to update their own data bases periodically. 
The response event is the ansuer for the m a d  8ad request events. Since the coruad event 
is executed sequentially, the carpletion of the current event also activates the next carPund 
event until all events are euacuted in the duplly task sequence. 

NO REQUEST 
S R  EVENT EVENT ? I 
TO BE OLD 

EVENT 

SET COMPLETION TIME 

COMMAND EVENT 
#E CORRESPONDING 

YES 'PROCESS THE EVENT 

1 :  I 
I 

I I SETEVENTTO 
BE ACTIVE c"-, RETURN 

ACTIVATE THE 

COMMAND EVENT 
-1 j S U S E Y E N T  

RESPONSE EVENT 

c I 3  RETURN I SET THE CORRESPONDING 
COMMAND EVENT TO I BE OLD 

A- RETURN 

Figure 4. The Flow Diagram of the Event-Handling Module 

5. Conclusions 

In this papar we discuss the simulation model for a real-time hierarchically distributed 
system using an Ethernet local area network. The probability and the impact of Pcssaga 
collision on the network is the main interest. The conceptual design of the 'cimtlation 
program was completed. The implementation is under way. 

Although the simulation is aot operable at this time, a considerable amount of 
information concerning network design and operation has been obtained. This information has 
been used to design the Telerobot processor protocol and corrmunication architectures in such 
a manner so as to minimize network interference. These design features include 1) a high 
bandwidth operating environment (i.e., 10 mps) to minimize the overhead on the Ethernet, 2 )  
the overall hierarchical design which prioritizes and reduces the functions that lower levels 
in the hierarchy must perform, 3) inclusion of a special parallel interface at the servo 
control level of the hierarchy to facilitate oCf-net high data rate transfer during cricical 
dynamic coordination tasks (e.9.. satellite grappling), 4) adjustment of the Ethernet 
retransmission interval to correspond with processor priozity relative to control execution 
(e.g., during error management. the RTC and llQl processors require greater access to the net 
than the AIP), and 5) the inclusion of a queue I/O in the network interface protocol package 
to accept incoming comands/requests even though the net is occupied. 

Using this simulator we can evaluate the system performance in terms of collisions 
during message transfer on the network, network utility, the data packet retransmission 
delays, and data request rate. For example, w e  can determine the response of the netbork to 
a utility level (i.e., transmission frequency), establish the lower and upper bound of the 
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data packet size, obtain an optimal data request rate, calculate new data flow C0r;ttOf 
parameters to minimize collisions, and consequently resolve any system bottlenecks. 
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